Wednesday 31st Oct 2012


Dust and Stellar Emission of the Magellanic Clouds

Ramin A. Skibba, Charles W. Engelbracht, Gonzalo Aniano, Brian Babler, Jean-Philippe Bernard, Caroline Bot, Lynn Redding Carlson, Maud Galametz, Frederic Galliano, Karl Gordon, Sacha Hony, Frank Israel, Vianney Lebouteiller, Aigen Li, Suzanne Madden, Margaret Meixner, Karl Misselt, Edward Montiel, Koryo Okumura, Pasquale Panuzzo, Deborah Paradis, Julia Roman-Duval, Monica Rubio, Marc Sauvage, Jonathan Seale, Sundar Srinivasan, Jacco Th. van Loon

We study the emission by dust and stars in the Large and Small Magellanic Clouds, a pair of low-metallicity nearby galaxies, as traced by their spatially resolved spectral energy distributions (SEDs). This project combines Herschel Space Observatory PACS and SPIRE far-infrared photometry with other data at infrared and optical wavelengths. We build maps of dust and stellar luminosity and mass of both Magellanic Clouds, and analyze the spatial distribution of dust/stellar luminosity and mass ratios. These ratios vary considerably throughout the galaxies, generally between the range $0.01\leq L_{\rm dust}/L_\ast\leq 0.6$ and $10^{-4}\leq M_{\rm dust}/M_\ast\leq 4\times10^{-3}$. We observe that the dust/stellar ratios depend on the interstellar medium (ISM) environment, such as the distance from currently or previously star-forming regions, and on the intensity of the interstellar radiation field (ISRF). In addition, we construct star formation rate (SFR) maps, and find that the SFR is correlated with the dust/stellar luminosity and dust temperature in both galaxies, demonstrating the relation between star formation, dust emission and heating, though these correlations exhibit substantial scatter.


Fueling the central engine of radio galaxies. II. The footprints of AGN feedback on the ISM of 3C 236

A. Labiano, S. Garcia-Burillo, F. Combes, A. Usero, R. Soria-Ruiz, G. Tremblay, R. Neri, A. Fuente, R. Morganti, T. Oosterloo

Aims: We study the emission of molecular gas in 3C236, a FR II radio source at z~0.1, and search for the footprints of AGN feedback. 3C236 shows signs of a reactivation of its AGN triggered by a recent minor merger episode. Observations have also previously identified an extreme HI outflow in this source. Methods: The IRAM PdBI has been used to study the distribution and kinematics of molecular gas in 3C236 by imaging with high spatial resolution the emission of the 12CO(2-1) line in the nucleus of the galaxy. We have searched for outflow signatures in the CO map. We have also derived the SFR in 3C236 using data available from the literature at UV, optical and IR wavelengths, to determine the star-formation efficiency of molecular gas. Results: The CO emission in 3C236 comes from a spatially resolved 2.6 kpc disk with a regular rotating pattern. Within the limits imposed by the sensitivity and velocity coverage of the CO data, we do not detect any outflow signatures in the cold molecular gas. The disk has a cold gas mass M(H2)~2.1×10^9 Msun. We determine a new value for the redshift of the source zCO=0.09927. The similarity between the CO and HI profiles indicates that the deep HI absorption in 3C236 can be accounted for by a rotating HI structure, restricting the evidence of HI outflow to the most extreme velocities. In the light of the new redshift, the analysis of the ionized gas kinematics reveals a 1000 km/s outflow. As for the CO emitting gas, outflow signatures are nevertheless absent in the warm molecular gas emission traced by infrared H2 lines. The star-formation efficiency in 3C236 is consistent with the value measured in normal galaxies, which follow the canonical KS-law. This result, confirmed to hold in other young radio sources examined in this work, is in stark contrast with the factor of 10-50 lower SFE that seems to characterize evolved powerful radio galaxies.

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s