Friday, Aug 31st

On the diversity and complexity of absorption line profiles produced by outflows in Active Galactic Nuclei

Margherita Giustini, Daniel Proga
(Submitted on 29 Aug 2012)

Understanding the origin of AGN absorption line profiles and their diversity could help to explain the physical structure of the accretion flow, and also to assess the impact of accretion on the evolution of the AGN host galaxies. Here we present our first attempt to systematically address the issue of the origin of the complexities observed in absorption profiles. Using a simple method, we compute absorption line profiles against a continuum point source for several simulations of accretion disk winds. We investigate the geometrical, ionization, and dynamical effects on the absorption line shapes. We find that significant complexity and diversity of the absorption line profile shapes can be produced by the non-monotonic distribution of the wind velocity, density, and ionization state. Non-monotonic distributions of such quantities are present even in steady-state, smooth disk winds, and naturally lead to the formation of multiple and detached absorption troughs. These results demonstrate that the part of a wind where an absorption line is formed is not representative of the entire wind. Thus, the information contained in the absorption line is incomplete if not even insufficient to well estimate gross properties of the wind such as the total mass and energy fluxes. In addition, the highly dynamical nature of certain portions of disk winds can have important effects on the estimates of the wind properties. For example, the mass outflow rates can be off up to two orders of magnitude with respect to estimates based on a spherically symmetric, homogeneous, constant velocity wind.

Disentangling AGN and Star Formation in Soft X-rays

Stephanie M. LaMassa, T. M. Heckman, A. Ptak
(Submitted on 30 Aug 2012)

We have explored the interplay of star formation and AGN activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e. L$_{x,AGN}$ and L$_{x,SF}$) for the remaining 24 Sy2s were estimated from the power law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L$_{x,AGN}$ and L$_{x,SF}$ from Monte Carlo simulations. These simulated luminosities agree with L$_{x,AGN}$ and L$_{x,SF}$ derived from Chandra imaging analysis within a 3\sigma\ confidence level. Using the infrared [NeII]12.8\mu m and [OIV]26\mu m lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L$_{x,SF}$ and L$_{x,AGN}$ at the 3\sigma\ level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGN.

Comments: accepted for publication in ApJ; 34 pages, 9 tables, 4 figures
Subjects: Cosmology and Extragalactic Astrophysics (astro-ph.CO)
Cite as: arXiv:1208.6233v1 [astro-ph.CO]
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s